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1. Introduction

String theory on AdSsx S° should be dual to N =4 supersymmetric Yang-Mills (SYM)
theory in four dimensions [[l]. This duality conjecture has undergone varieties of tests at
various levels. One of them is the spectrum matching at the both sides of the duality. It
turns out to be very difficult to present the full spectrum of the theory and then to compare
it with spectrum of the anomalous dimension of the gauge theory operators. Hence it is
natural to examine various limits of the duality conjecture. One such interesting class of
operators is that which carry large charges, such as large angular momentum [J]. In this
sector one can use the semiclassical approximation to find the energy spectrum. In the
gauge theory one needs trace of very long operators. It further was analysed in a beautiful
paper [E] that the Hamiltonian of a Heisenberg’s spin chain system is related with that of
the dilatation operator in N=4 Supersymmetric Yang-Mills theory.! Since then lot of work

'For recent reviews, see [E,H]



has gone in to understand the interplay between the integrability of the string theory on
AdS, and making connection with more than handful of gauge theory operators.

One such low lying spin-chain system corresponds to magnon like excitation. Hofman
and Maldacena [ have been able to match these magnon excitations to that of a class of
semiclassical rotating string state on R x S2.2 They move around the equator of the sphere
and have large angular momentum and energy. The giant magnon solution of correspond
to operators where one of the SO(6) charge, J, is taken to infinity, keeping the F — J
fixed (J — oo, A = fixed,p = fixed). These spin chain giant magnon excitations satisfy a
dispersion relation of the type (in the large ’ t Hooft limit (X))

pog= Y

s

sinz—?
2

: (1.1)

where p is the magnon momentum, which on the string theory side correspond to a deficit
angle ¢.

Another class of solutions with spike like configuration in the AdSsx S® has also been
found out [P, ] and in the gauge theory side these correspond to single trace operators
with large number of derivatives. More recently in [R7] is has been analysed that for an
infinitely wound string around S? and S? with a single spike can be obtained from a general
solution of rigidly rotating string on the sphere. More interestingly in a certain parameter
space the solutions can also be thought of as giant magnon. In fact both the giant magnon
and single spike solutions has been obtained by taking different limits on a general class of
rotating solutions. So it seems natural that single spike solutions fall into the same class
of solutions as that of giant magnon. The difference is that the spike solutions do not
correspond directly to that of any gauge theory operators. For these single spike solution,
like the magnon dispersion relation can be summarized by

VA

E—TA¢:7:@ (1.2)

where At is the difference in the angle between two spikes.

It is very interesting knowing the results of the elementary string wound around AdSsx
S5 has in its solution both magnon and spike like configuration, what happens in case of
D-string ? It will enhance our understanding beyond the elementary string configurations,
and might also give generalization of these as well. We would like to analyse this possibility
in the present paper. For our purpose we will restrict ourselves to the less supersymmetric
Lunin-Maldacena background [B{]. This background has been conjectured to the Leigh-
Strassler marginal deformation of N' =4 SYM. The study of properties of classical string
in these backgrounds was performed in many papers, for example [0, 7, B3—-fif. Our
goal is to perform similar analysis in the case of D1-brane. First of all, the D-brane unlike
the fundamental string couple to the dilaton explicitly. So it is rather interesting to see
if similar configurations of giant magnon and single spike solutions exists in case of D-
branes. The corresponding operators in the dual gauge theory is still unknown. However
the existence of these semiclassical states in string theory side might give a hint that there

2For some related papers, see [E,Q7 @, @, E]




might be similar states in a gauge theory. We will solve the equations coming from the
Dirac-Born-Infeld action on the D1-string, and will analyse the possibility of getting the
giant magnon and single spike like solutions on its worldvolume.

The rest of the paper is organized as follows. In section two for notational details
we first write down the DBI action of a D1-string and derive the equations of motion for
the worldvolume coordinates and write down the background fields corresponding to (8
deformed AdSsx S°.> We further derive the equations of motion of a rotating D1-brane
in this background and write down its equations of motion. Section three is devoted to
the study of the solutions of the equations of motion derived in section two, and find out
solutions that correspond to spike and giant magnon is case of S? and S embedded inside
S5. We show the existence of the similar dispersion relation, as in case of magnon solutions
on fundamental strings, in the presence of worldvolume gauge field. In section four we
discuss the possibility of finding out the magnon and single spike solution in case of D1-
brane in 3 deformed AdSsx S® background. we find more general solutions and show that
in the limit of large electric flux on world-volume of D1-brane they reduce to the equations
that describe collection of large number of fundamental strings. We also construct rotating
and wound D1-brane solution that has two equal momenta on Sg. In section five we present
our conclusions. Finally, some details of the calculations are summarized in the appendices.

2. D1-brane in 3-deformed background

The dynamics of D1-brane in general background is governed by following action

S = Sppr+Swz,
Sppr = —Tl/d2§e_q>\/—detA,

Aa,@ = 8041'M({91g1'NGMN + (271'0/)falg ,
Fapg = aaAg — agAa — (27TO/)_1BMN8Q$M65$N,

Swz =71 /6(27“)/)’7: NC, (2.1)

where 71 is D1-brane tension, £% « = 0,1 are world-volume coordinates and where A,
is gauge field living on the world-volume of D1-brane. Note also that C' in the last line
in (R.1)) means collection of Ramond-Ramond fields. The equations of motion derived from
this action has been summarized in appendix-A.

Our goal is to study dynamics of D1-brane in 3-deformed AdSs x S° background [B(].
Let us now review its main properties.

The 3-deformed AdSs x S® background can be obtained from pure AdSs x S° by a
series of TsT transformations as was shown in [i§]. The deformation parameter 3 = y+ioy
is in general a complex number however we restrict to the case when o4 = 0, where the
corresponding deformation is called v deformation. The resulting supergravity background

3For review of integrable deformations, see [@]



takes the form

3 3
ds* = R? (dSidsg, + ) (dpf + Guidd}) + 7 Gripapi (Y d¢?)> : (2:2)
i=1 i=1

It is important to note that this background also contains in addition a non-trivial dilaton

field as well as RR and NS-NS form fields:

B = R*3G(uip3de1dds + pipidadds + pipzdérdes)
1

20 _ 2® _
et =G, G = — )
L+ 3% (uips + paps + i)
Co = —R*ye 0w dy, dwy = 12cos 0 sin® 0 sin ) cospdd A dip
Fy = dCy = 4Re™ " (waqss + wgs)
w1 = sinfcosvy, o =cosf, usz=sinfsiny, (2.3)

where (6,1, ¢1, ¢2, ¢3) are the usual S° variables and where WAdSs,Wgs are corresponding
volume forms of AdSs and S® respectively. Finally 7 is defined as

= R%y, R?=Vira2e?N . (2.4)

Our goal is to study spikes solutions on D1-brane that moves on 53.4 We represent this
space as a subspace of y-deformed AdSs x S5 presented above

M3 = 0, ¢3 =0 (2.5)
or equivalently
Yv=0, ¢3=0. (2.6)
The relevant part of the v deformed AdSs x S° is
ds* = R*(—dt* + do? + G'sin? 0d¢? + G cos® 0d¢3) (2.7)
and the dilaton, RR and NS-NS two-forms take the form

B¢1¢2 = R2’§/G SiIl2 9 COS2 9 5 62(I) = 62(I)0G5

1
G = . 2.8
1+ 42sin% 6 cos2 6 (28)

Note that due to the fact that Cy vanishes we do not need to worry about the Wess-Zumino
term of D1-brane effective action.
Let us now consider following ansatz

t=rt, 0=0@), o =wiT+d1(y), ¢2=woT+h2(y), (2.9)

where we have defined the variable y as

y=oao+f1. (2.10)

4yarious supersymmetric D-brane embeddings in the beta deformed background was studied in [@]
However our aim is different in this paper



Now we start to analyze the equations of motion ([A.1]) and ([A.4) with the ansatz above.
The explicit form of the matrix A is summarized in (A.6) - (A.12).

Let us see the equations of motion ([A.1]). Firstly, for 2° = ¢ this equation implies an
existence of conserved quantity

—®o 2,2
e 'R ~ ~
—— — — (Gsin®wid; + G cos® Ouwodh) = A, A = const . 2.11
\/a\/m( ¢1 2) ( )

In what follows we presume that A < 0. Further, the equations of motion for ¢, takes

the form

R%sin2 0 [waG cos? 9((25@12 - <J~5/2w1) - ¢/152]

—A = =
G sin? O @) + cos? Owadh,

+sin? § cos® Qwa R?YGTT = B, (2.12)

where B = const. II is a constant that counts the number of fundamental strings stretched
along the world volume of D1-brane defined in (A.9).
In the same way the equation of motion for ¢o gives
AR? cos? 0 [wiG'sin? 0(dhw — ¢ wa) — Phr?]

) 2 2~
— = = —sin“ 0 cos” Qw R“AGII = C', (2.13
G sin? fw; ¢} + cos? Qwadl, e ( )

where again C' is constant. Before we proceed to explicit solutions of these equations we
determine conserved quantities that reflect isometries of given background. These currents

are conserved as a consequence of the equation of motion:
aa‘7t?é172 - 0 . (214)

Then corresponding conserved charges take the form

2 27 2
P = / doJg], Ji= / doJ], Jo= / doJy , (2.15)
0 0 0

where we presume that D1-brane has compact support and also that world-volume fields
obey periodic boundary conditions.

After the general discussion of the properties of D1-brane in G-deformed background
we proceed to the study of the solutions of the corresponding equations of motion.

3. D1-brane in AdS; x S°

We begin our discussion with the study of the dynamics of D1-brane in original AdSs x S°
background (7 = 0). For simplicity we start with D1-brane that rotates on S2. We closely
follow recent interesting paper [R7).

3.1 Single D1-brane on 52

This case is characterised by condition



Then the equation of motion for q~5’1 (B:13) implies following relation

Bw1
Rk = —= 3.2
K= (32)
Since the equation (2.12) does not determine $1 we can presume that
o =1 (33)
so that ([A.12)) reduces into
20012 1 oin2 12 20, 2
94 R7(0 +sin* 0) — 0" sin® fw]
det A = —a“R T+ 2% (3.4)
This result together with (R.11]) implies following differential equation for ¢
o — sin @ e‘2¢0a2w%(1 + 62%112) sin? 6 — A2%k2 1/2 (3.5)

|A| K2 — w?sin® 0

This equation is generalisation of the equation derived in paper [R7]. In fact, due to the
fact that the dilaton is constant and C5 vanishes for v = 0 the dynamics of D1-brane has
similar form as the dynamics of fundamental string. More precisely, it is well known that
IT determines the number of fundamental strings on the world-volume of D1-brane. Then
the equation above determines the dynamics of the bound state of single D1-brane and II
fundamental strings in AdSs x S° background.

To proceed further we have to impose the boundary condition on the world-volume
fields since we consider closed D1-brane. The natural boundary conditions take the form

21 Gmax
21 = / do = Zn/ d_@/ , (3.6)
0 0 al6'|

min

where n denotes number of spikes on D1-brane world-volume and where 0,i, and 6.y will
be defined below.
Let us now evaluate charges given in (R.1§). Using (R.11]) we obtain that P; is equal to

2 R2 Omax 3 9 —2%y .2, 2 1 2<I>()H2 _ A2 2
P—_ nTik / o sinf(e a*wi(l+e ) wy) . (37)
WL JOin [(e72%002w? (1+€2PI1?) sin® 0 — A2k2) (k2 —w? sin® 0)|
In the same way we obtain
2 R2 Omax —2&0 2,2 1 2‘1’0]:[2 i 29_A2 2
p, = 2nm / do sinH\/e afwil L )sin = (3.8)
o emin K= = wl Sin 9

Finally, the difference between two spikes is given by an expression

0 0 2 32

max - df) max A K2 — w¥sin® 6§

A =9 =2 do ! - (39
v / alb’] /9 . asin@\/e—mocﬁw%(l+62¢0H2)sin29—A2/{2 (8:9)

emin mi




Note that this is positive since we have A < 0. Now requiring that the arguments in ¢’ is

positive we find the range of # can be

A%g? 9 K2
CASE I: e 002 (1 1 ZROIT2) < sin“f < w_% (3.10)
or 2 2,2
K . 9 A’k
CASE 11 : w_% < sin“ 0 < ST T2 (1§ T (3.11)

Further, in the first case we can have (1)2—2 <1lor (ii)Z—z > 1. In the second case we have
1 1

A2H2 . AQI{Q .
(iii) e T2 (15701 <1lor (1V)w%e,2¢0a2(1+62%n2) > 1. Note that these results can

be considered as generalisation of results derived in [7].
3.1.1 First limiting case: giant magnon

Let us consider the case (i) and (ii) given above and take the limit |w;| — . Following [R7]
we define two angles

in2 0 _ A?k? 0 = in 0 <H<0
SI” Umin = SPe2%002(1 1 2%0112) ) max — arcsmw—l s Omin <0 < Omax - (3.12)
The limit |w1| — & corresponds to fmax — 5. In this case the equation of motion for ¢ (B.5)
implies
d6 sin 6y, cos 6
/ i co8 = +do (3.13)
sin 9\/ sin? @ — sin® O,
that has solution "
sinf = :Fsm.ﬂ . (3.14)
sino
Further, Avy is equal to
6
max df cos 6 2
A1) = 2sin Hmin/ cos = —arcos(sin Oppin) (3.15)
Omin Q¢ SID 9\/ sin? @ — sin® Oy @
and the energy F is equal to
E—_p— _2n71R22A,<;2 /emax df sin O(1 — sin® Oy (3.16)
aws Omin  SID Hmin\/(sin2 6 — sin? Opin ) (5in? Opax — sin? 6)

In the same way we obtain

P = 2nr R2 Akwy /9"‘ax df sin 0 \/sin2 0 — sin? O (3.17)
(7

2 : _ - -
awy min S 0min \/sin? 0., — sin? 0
and hence

A
E — P, =2ne " %n V' 1+ e2®oI12 sin Tw . (3.18)

We have derived an analogue of the giant magnon dispersion relation for D1-brane with
world-volume electric flux II. Then we can interpret the solution above as the giant magnon
on the world-volume of the bound state of single D1-brane and |II| fundamental strings.



3.1.2 Second limiting case: Spike solution

The spike configuration corresponds to the limit

—2Pg . 2 1 2‘1’01‘[2
W2 e ;2:26 ) (3.19)

We again define

A2g2
e 2®0w2a?(1 4 e2%0112)

. K .
Sin Opin = o sin? Oax =

(3.20)

so that the limit (B.19) corresponds to fmax — 5. Then the differential equation for 6’ (B.9)
takes the form

g — St0Omin sin 0 S{nz Omax f;iHQ i (3.21)
Sin Opax sin“ 6 — sin® O ,in
that can be easily integrated with the result
COS amin h_1 Cos Hmin -1 sin amin + (3 22)
——— COS — | —co8 ——, | ==T0. :
sin Omin cos o sin @

Further, for the limit (B.19) the charge Py given in (B.§) is equal to
P; = 2n1 R?e®0/1 4 €2%0112 cos O, - (3.23)

On the other hand we obtain that E and Ay derived in (B.7) and (B.9) diverge. However
we can find combinations of these charges that is finite

E —ne” /1 + 221127 R2aAY = 2nm R2e ™0/ 1 + 62‘1’01'[2(% — Omin) - (3.24)

Again, this result can be considered as a generalisation of the spike relation derived in [R7]
to the case of bound state of single D1-brane and collection of Il fundamental strings.

3.2 D1-brane on S°: two angular momenta

Now consider more general situation when we examine the motion of D1-brane with an

extra angular momentum. In this case the equations of motion for ¢; (2.13) and for

¢z (B13) are equal to

wa cos? O(Pwy — Phw) — ¢ K?]
sin? fw; @ + cos? Qwa

[wy sin? O(Phwr — Pyws) — Phk?]

sin? Qw1 ¢ + cos? Owad)

— AR%sin?6 [

=B,

— AR%cos’ 6

=C. (3.25)

It turns out that if we combine these two equations we obtain relations between constants
A, B and C. In other words we are free to presume particular form of either ¢; or ¢2 and
we choose the simplest one

o=1. (3.26)



Then with the help of the equation of motion for ¢1 we find
-, sin? 0(AR?k? — Bwy — AR?w3 cos? 0)

g 3.27
% wo cos2 0(B — AR2w sin?0) (8:27)

Following [@] we choose the constants of motion appropriately so that
Hﬁomeeg. (3.28)

It turns out that the natural choice is

1 + e2%o]]2 , B= ae  POR%Zk\/1 + e2®oT]2 | (3.29)

Then the equation of motion () simplifies considerably

e_%ozwl

A:

)
~ sin“ Owiws
= "= 3.30
w?sin? § — K2 (3:30)
Further, using (R.11]) and (B.3() we easily find differential equation for 6’
, |k|sinf@cosf 5 N
o' = m (wf — w3)sin® 0 — K2 (3.31)
and consequently
0 : 2 2
max 3 9 f—
P, = —2nmie” P R2\V/1 + 62‘1)01_[2/ do sin 0(r” — wi) ’
Omin g cos 9\/ (wi sin” 0 — k2
emax
Pi = 2nme P R2/1 1 29T / wisinbeosd
Omin \/ (,()2 Sln 9

)sin? @ — k2

0
max 9 9
P2 — _2n7_16 <I>0R2 /1 +62¢0H2/ \/ w2 sin 6 cos ‘ (332)

Finally we find that the difference in angle between two endpoints of the string is equal to

w?sin?  — k2

ak sin 6 cos 9\/((4)% — w32)sin? § — K2

(3.33)

Gmax
sz—g/ d9
Gmll’]

||

2_ 2
Wi —wy

> where we presume w? >

In all these calculation Oyax = 5 and O, = arcsin <

w%. Here we have chosen 6., such that insider square root is positive. Then, since

arcsin (‘ |) < arcsin < |§ | 2> < m/2, 6 can never reach a value such that sinf = L—F”ll
wiTwa

Thus in this case 6’ cannot go to infinity at any point. Performing integrals we obtain

P, = 2nme ®0R%\/1 + 2®0]12
cos 7y
Py = —2n71e” PO R%\/1 + €2P01]2 Sy
cos 7y

sin @,

sinf, (3.34)



where we have

sinf = siny = —=2 (3.35)
w

Finally we find
E —n1R%e™%0\/1 4 221120/ = 2n1 R%2e™%0/1 + 2201120, (3.36)

where w
- m . K
0=——0y, sinfy= .
2 wi — w3

(3.37)

Then we can also write

P = \/P22 + 2n1 R2e~%0\/1 + 20112 5in?§ . (3.38)

Again this result can be thought of as a generalisation of the results presented in [B7] to

the case of bound state of single D1-brane and II fundamental strings.

In the rest of the paper we will study the dynamics of D1-brane in §-deformed back-
ground. Before we come to this problem we review some properties of Nambu-Goto form
of the string action in this background in appendix-B.

4. D1-brane in 3-deformed background

In this section we return to the study of non-trivial solutions on the world-volume of
D1-brane in g-deformed background. We closely follow the study of the fundamental
string performed in previous section. Recall that the equation of motion for A, implies
an existence of conserved quantity IT defined in (A.d) that has the physical meaning as
the number of fundamental strings. In analogy with the discussion performed in previous
section we fix the diffeomorphism invariance by imposing the conditions

V—det AV 1+ e2®II2G = Ay, A =0 (4.1)

or equivalently

(Aro)s = A, . (4.2)
For this ansatz the conserved charges F;, J; and Jo and the equations of motion for ¢; and
¢o are summarized in appendix-C.

Using the condition A, = 0 together with the equations of motion for ¢, ¢
in (C.2), (C3) respectively, and also the relation ([C.4) we obtain differential equation
for #” in the form
B 5%+ 202 — 203

0/2 —
(2083 — B)?
B2e2%0 (2e2%0
T Rign? 0(1 + e2®I12G) (203 — (32)2 R4 cos2 0(1 + e2%0I12G) (203 — 32)2 -
25aGe?®oIl

w1C sin® 0 — wo B cos? 0) —

(1 + e2®II?G)R? (208 — ﬁ2)2(
A?G(w? sin? 0 + w2 cos? 0) [ 1+ e2PoI1?
(2a8 — (3?)? 1+ 212G

(4.3)

,10,



We must however stress one important point. The equations of motion given above are

valid in case when II > 1. This follows from the analysis of the equation of motion for
0

- =1

!/

e PA e ?(A)°
R? LA | = kR(a— Ble PV 1+ €221 =0 4.4
e e e il B 1T (4.4)

and we see that this equation is obeyed for general II in case when

a=0. (4.5)

On the other hand for IT > 1 we can write 1 + Ge?*°TI? ~ Ge?®°I1? and we see that ([£4)
is automatically obeyed. Let us now analyse this situation in more detail.

4.1 1II>1

This situation corresponds to the bound state of large number of fundamental strings II
and one D1-brane. In this case it is natural to perform a rescaling B = bl ,C = cII. Then
in the limit IT > 1 the equations ([C.d), (C.3) take the form

- 1 b - 9
¢ = 203 — 32 [R2G sz~ weyeos 0+ (Bun —awn)],
~ 1 c

+ awisin? 0 + (Bws — aws)] . (4.6)

¢2 = 203 — (32 [RZGCOSQ 0
Finally, the equation ([.3) reduces into

52 +2a% - 208  a?(w?sin?6 + w?cos?h)
= K — —_

6I2
(23 — B)? (23 — 32)?
b2 2
 RiGsin? 0(2a8 — 32)? "~ RYcos20G(2a8 — 32)2
Ao (wic sin? 6 — wob cos? 0) . (4.7)

" R2(2a — 32)2

We see that the equations (£.6) and (f.7) take exactly the same form as the equa-
tions (B-18), (B.17) and (B.1§)® that describe the dynamics of fundamental string. Further,
in the limit e®°II >> 1 charges ([C.1]) reduce into

2m
P = —71R2|H|/£/ do,
0
2 B B
J1 = R0 / doGsin? 0wy + (8 — @)@} — Jarcos® 0¢))]
0
2
Jo = 1 R?|II]| / doG cos? Olws + (B — @)@y + Fasin® 0] . (4.8)
0

that exactly reproduce the form of these charges for collection of fundamental strings.

5 After appropriate identification of parameters a and 3 and constants b, c.

— 11 —



4.2 General II

As we have seen above the only solution of the equation of motion for z° corresponds to
«a = (. In this case the equation of motion for ¢1, ¢o take the form

(5/ _ 1 [ Beq)O B - ® - \/a ) 6]
1T Tt ORGRa? R2VGsin2g e VRS
T 1 Ceq)o I <I>0~\/a‘. 29 19
%2 = 1+ e2®0GIT2a2 [RQ\/ECOS2 0 +aw lle™ VG sin" 6] . (4.9)
Further, the condition ([.2)) for 8 = « implies

Then, using the condition A,, = 0 and (£.10) we finally obtain differential equation for ¢

2

0”? = % + (w}sin? 0 + w3 cos? 0) [
a

27Ge*®I1B
wa(1 4+ 2®I12G)R2a3
B2e2%0 G [ 1+ eI
 R'a*w?sin?fcos? (1 + e2®I12G) a2 <1 + €2¢0H2G>:|

(4.11)

Note also that for o = 8 the charges (C.J]) take the form
2m —dg
P = -nR% | do

V14 e20GII2
0 VG

2 _
Jy = 1 R? / dole™ 0w VG sin? 01/1 + €220 GTI2 — 4G cos? 0 sin? fadhl]
0

2m B
Jo = 1 R? / doe”®0waV G cos? 0/ 1 + e220GII2 + 3G cos? O sin? fad)|IT] . (4.12)
0

It is still difficult to solve the equations ([.9) and (.11]) for any value of II. In fact we were
not able to find time-dependent configuration that has an interpretation as giant magnon.
For that reason we now restrict to the case of constant .. First of all we obtain that ¢;

and ¢o have following solutions

$1 = wiT + (5’1(6@)(040 + p7) ,
$2 = woT + Ph(0c) (a0 + BT) | (4.13)

where (]3'12 (6,) are constants whose explicit values are given in (f.g) evaluated for .. Note
that the periodicity conditions for ¢1, ¢o imply

¢1(21) — ¢1(0) = ¢ (0.)a2m = ni2m
$2(27) — $2(0) = Ph(6.)a2m = no2m , (4.14)

where nj o are winding numbers. Further, the equation A, = 0 implies the relation
between k,w; 2,n12 and 0. in the form

0= k2(1 +7?sin? 0, cos? 0,) — sin? O.(wy + n1)? — cos? O (wa +12)2 =0 .  (4.15)
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We also have to demand that 6. solves the equation of motion for 6. In fact, after some
algebra we obtain following equation

7%(cos? 0. — sin® 0,.)G [sin2 few? + cos® fawi+
+ G'sin? 0, (wi + n?)e2 I + G cos? 0. (wh + n3)e**0I1%] —

—(w? —n? —ws +nd) (1+ GeZq)“HQ) =0. (4.16)
Finally, if we impose the condition Ay = (A,4)° we obtain
sin? 0.n1wy + cos? O.naws = 0 . (4.17)
We solve this equation with the ansatz

Wi =wy=w, Ni=-nN9=n, 0H.= (4.18)

™
1
Then it is easy to see that ([.16) is obeyed for the ansatz ({.1§). In what follows we restrict
ourselves to this particular situation. Then for the ansatz ([L.1§) the equation (f.15) implies

K> ! (W +n?) . (4.19)

- 2
1+

Note also that for the ansatz ([.1§) the charges ([.12) take the form

22
P, = —71R26_¢027TI£\/1 + 'yz + e2%o]]2

1 22
J = Jo = §J = R%e ®oor w\/l + WZ + e2%o]]2 4 g’ye%ﬂ . (4.20)

52

21+ %)

Finally, using (4.19) we find following relation between E = — P, and J,II and n
5 \2
E?=J%+ (—27T’I’L7'1R2H + §J> + (2nR*rie~%on)? . (4.21)

First two terms above exactly reproduce the results derived in paper [f6]® where the term
proportional to I describes contribution from wrapping fundamental string. The last term
in ({£.21)) follows from the contribution of wrapped D1-brane.

5. Conclusions

This paper has been devoted to the study of dynamics of D1-brane in the AdSs x S°
background and also in its G-deformed version. We wanted to see how D1-brane dynamics
is different from the corresponding study of the fundamental string. In case of AdS5 x S°
we have derived the straightforward generalisation of the giant magnon and spike solutions
that were found in case of fundamental strings [, P7]. More precisely, we have found giant
magnon and spike configurations that are related to the dynamics of bound state of single

5The minus sign in front of n is irrelevant.

,13,



D1-brane and II fundamental strings. We mean that this is very satisfactory result that
explicitly demonstrates similarity of the classical description of fundamental string and
D1-brane in AdSs x S® background.

Then we proceed to the analysis of D1-brane in S-deformed background. Now we have
found that the situation is different. In fact, we showed that in case of the large number
of fundamental strings that are stretched along world-volume of D1-brane the dynamics
of this system takes the same form as in case of the fundamental string [BJ]. This result
again demonstrates the consistency of our approach. On the other hand in case of finite
number of fundamental strings we were not able to find time dependent configurations
that could be interpreted as giant spikes or magnons on the world-volume of D1-brane.
We mean that this is a consequence of the fact that classical D1-brane explicitly couples to
dilaton which is non-trivial in the S-deformed background and has significant contribution
to the dynamics of D1-brane. On the other hand when we have restricted to the study of
dynamics of D1-brane with constant # we have been able to find the generalisation of the
formula derived in [44].

In summary, we hope that our result could be useful for further study of the dynamics
of D1-brane in AdS5 x S° background and its deformation. It would be certainly interesting
to study properties of Dl-brane in the B-deformed AdSs x S° background with complex

deformation parameter.
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A. Equations of motion

M

Varying the action (R.1)) with respect to 2™ we obtain the following equations of motion

for #M7

— T 0Mm [e_CD]\/ —det A—
—%e*‘p(@MgKLﬁaxKﬁﬁxL — 8MbKL6a:cK65:nL) (Afl)ﬁa v —det A+
47104, [e’q’gMN(?ng (Afl)ga v —det A]—

—T10ale” P barn Oz (AN V=det Al + Jy = 0, (A1)

where

0Swz
T = daM

(A.2)

"equations of motion for all the branes in AdS spacetime has been discussed in [@]
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and where

(A =g (A7) (=g ()T - a) A

2

N |

In the same way the variation of (R.I]) with respect to A, implies following equation of

motion
2ra’midgle® (A7) V= det Al +J% = 0, (A.4)
where 55
Je=2"Z A5
A (A.5)

Now we start to analyse the equations of motions given in (A.1)) and (A.4). To begin
with note that for the ansatz (R.9) the matrix A is equal to

A, = RY—K% + 3207 + Gsin? 0(w; + B9))? + G cos® O(wa + Bdy)?],
A, = R*[aB0” + Gsin’® fa(w; + Bd)) @) + G cos® fa(ws + Bh)dh +
+3G sin? 0 cos? fa(wad) — widh)] + 27’ F,
A, = R*[aB0” + Gsin’ fa(w; + B8)) @) + G cos® fa(ws + Bh)dh —
—3G'sin? 0 cos? fa(wad) — widh)] — 2w/ F
A, = R*[0*0? + Gsin® 002¢? + G cos® a4, (A.6)

where F,, = F and where (...) = %(. ..). Then it is easy to calculate det A and we obtain

det A = —a?R*&?[07 + G'sin? 047 + G cos? 05] +
+0?R*G? cos? 0sin® O(w1dhy — wad,)? +
+a? R*GO™ (sin? w? + cos? w?) +
+[AR%G sin? 0 cos? fa(wad| — widh) + 2ma/ F]? . (A.7)

Let us now return to the equations of motion ([A.1]) and (A.4). The equation of motion for
A, implies

Orfe® (A7!) 7 V—detA] =0,
dole™® (A1) V=detA] =0 (A.8)

and consequently
A-TO'
eféﬂ =1I, (A.9)
v—det A
where II is constant that counts the number of fundamental strings stretched along world-
volume of D1-brane. Further, using the properties of matrices A° and A“ defined in ()

we easily find

detA == A'T’TAO'O' — A’T'O'A'O'T =
A—TTAO'O' - (ATU)S(A—TU)S + (ATU)A(A—TU)A . (AlO)
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If we combine ([A.9) with (A.10) we can express (A, )" as
(ATU)A(ATJ)A(G_Qq) +1I) = (~ArrAgo + (ATU)S(ATJ)S)H2 (A11)

and hence the determinant det A takes the form
o*R* 22 2 572 20712
det A = m X |K (9 + G(Sin 9@1 + cos 9¢2 ))—

— G? cos® B sin” O(w1 By — wah)? — 62G(sin? Ow? + cos? ng)] . (A12)
A.1 Conserved charges

The conserved currents are given by

oL o
‘7ta = SOt = —T1e*¢gtt05t (Ail)g m7
a oL B 1\ fa e
T = Sargr = ¢ 1901019501 (A7) " 4 borga0p 2 (A7) V= det A,
a oL B 1\ fa e
Ty = 6002 =—mne ¢[g¢2¢26ﬁ¢2 (A 1)5 + bgop, 0P1 (A I)A ]m (A.13)

B. Nambu-Goto form of the string action in 3-deformed background

In order to understand better the dynamics of D1-brane in (-deformed background we
consider Nambu-Goto action for fundamental string in this background. Our goal is to
explicitly see how analysis of this action can be related to the analysis of the sigma model
form of the action presented in [B3].

Let us start with the Nambu-Goto action for fundamental string in general background

1 1
S = = /deO’ [ —detayg + §eo‘ﬁbMN6axM65:cN , (B.1)
where ¢ = —¢f* | 0 =1 a5 = gunOa2MIgxN. Variation of (B.1) with respect
to 2™ implies following equation of motion

1 o _1\Ba
§5M9KL(%$K(95:UL (a’l)ﬁ V—deta — du[gnnsz” (a l)ﬁ V/— det a]+
1
+§5aﬁ3MbKL6axK6ﬁxL — 804[8&661\/[]\[3,(31']\[] =0. (B.Q)

For reader’s convenience we again write the relevant part of the S-deformed AdSs x S°

background
ds? = R*(—dt* + df* + G'sin® 0d¢? + G cos? 0d¢3) (B.3)
and
1
P2y 2 2 20 _ 20 _
By 4, = R°7Gsin“Ocos™ 0, e =e°G, G = T s g0 6 (B.4)
Let us now consider following ansatz
t=r7t, 0=0@y), d1=wiT+61(y), ¢2=wor+d(y), (B.5)
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where
Yy =ao+ [T . (B.6)

For this ansatz components of matrix a take the form
a;r = R2[—k% 4 520" + Gsin? O(w; + B} + G cos? (ws + Bh)?],

a;, = a5, = R*[af0” + Gsin? fa(wy + 5@, + G cos? Ba(ws + B )],
a,5 = R2a*[0? + Gsin? 042 + G cos® 093] (B.7)

and consequently

deta = —a?R*s2[0"2 4+ G'sin? 042 +
+G cos? 092] + a2 R*G? cos? fsin® (w1 dh — wad))? +
40202 G(sin? fw? + cos? Huw3) . (B.8)

Note that the fundamental string has following conserved currents

L 1 _1\Ba
Tt = Gt = gpondat () V= deta,
o«  Lna 1 _1)Ba I s
j¢1 — 8a¢1 = _—2wa/g¢1¢laﬁ¢l (a ) vV —deta — 271'0/6 b¢1¢2(95¢2,
a [rNG 1 —1\Ba 1 «
j¢2 — a ¢2 = _ﬁg(de)Qaﬁ(bQ (a 1) —deta— 271'0/8 ﬁbd)Qd)lag(bl . (Bg)

Then for the ansatz (B.F) we obtain following form of conserved charges P, Ji, J

P, = _R_Q’i/%dUL’
271'0/ 0 \/m

1 2T R2Gsin2%0 ~ v
/0 dgm[(wl + Bdh)ace — aglar] —

2m B
/ do R?*4aG sin? 0 cos? 0%,
0

J1 =

2ral
1

2wl

Iy = 1 /de R2G cos? 0
0

[(wQ + ﬂ&é)aoo - OZQ;/QaTU] +

2ma/ 7 V—deta
I .
+ ol /0 do R*3aG sin? 0 cos? 09 . (B.10)

Nambu-Goto action is still diffeomorphism invariant. We fix this gauge freedom by de-
manding that

V—deta = \/—aTTam7 +a2, =ay, (B.11)
that can be solved with the condition®

81t is clear that we could use an alternative gauge fixing solution a-- = —ass ,arc = 0.
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and hence

Ay — A7y, V—deta=a,, . (B.13)
With this gauge fixing the charges given in (B.1() are equal to

R2 2w
Pt = - il / dO’,
2ma/ 0

R? 2 .2 7 a ~ 2971
J1 = ﬁ/o doGsin” 6 [wl — ¢1E — oy cos ‘9(?2}
R? [*7 2 e 271
Jy = 2710//0 doG cos” 0 |:(,U2 —(bQE + oy sin 9¢1} . (B.14)

Then using (B.12) and (B.1J) it is easy to see that the equation of motion for ¢; implies
following differential equation for gzg’l

~ 1 b
| = 5 2
= a5, [RQGsinQH —owyycos™f —w (f — 00} ) (B.15)
where b is constant. Note that if we choose the parametrisation 8 — o = —3 we obtain
¢ = : b — awyy cos® 0 + w1 B (B.16)
! (B2 — a2) | R2G'sin” 6 1 .

that coincides exactly with the equations of motion given in [BJ]. In the same way the
equation of motion for ¢o implies

~ 1 c
r_ _ _ ~ 2
#2= (% — 2Pa [RQGCOSQH wa(f} = @) + awnysin 9] ’ (B.17)
where ¢ is again constant.
In order to find differential equation for 6 we use the condition a,, = 0 together
with (B.1§) and (B.17) and we obtain
1 b? c?
9/2 - - 2 2 _ 2 2 2 _ _
(57 = 2Ba)? [K (07 =200 420°) ~ T n®g ~ WG s T

o5
—l—%(u)gb cos® 0 — wiesin? 0) — o (w? sin? 0 + w3 cos?H) |, (B.18)

where we have also used the relation
woC n w1b
R(a—-p) Ra-p)

This relation follows from the condition a,, = a,, that implies

0=r*+

(B.19)

0% (aff — o) + aw G sin? 0] 4+ awsG cos® 0 = (a? — af)[G'sin? 07 + G cos? 09FB.20)

Then if we combine this result with the condition a,, = 0 and use (B.I§) and (B17) we
finally obtain (B.19).

It is easy to see that if we make the substitution 3 = a — 3’ in (|B.1§) we obtain the
same equation that was presented in [BJ. A careful analysis presented there shows that
there exist two solutions corresponding to giant magnon and spikes. We will not repeat
these calculations here and recommend the original paper [B3] for more details.
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C. Conserved charges for the D1-brane in 3 deformed background

The conserved charges F;, Ji, Jo for the D1-brane in the 8 deformed background can be
calculated as

P, = —n R O% do \/2 V1 + e220GTI2,
J = 1 R? /QF dole™ VG sin? 0wy + (3 — a)(g’l)\/m _
4G (:(O)S2 0 sin? QaghIl]
By = [ ol G eos s + (5 - )V T G +
+7G CS)S?HSin2 fad| 1] . (C.1)

Further, the equations of motion for ¢; reduces to
L X
V1 + €220 GII2 (208 — 32)

Be®o
m — awsITe®93V G cos? 0 + (Bwy — aw)V1 + e220GI2] . (C.2)
sin

o =

X[

In the same way the equation of motion for ¢o gives

~ 1

Py = /1 + 220 GTI2 (208 — [32) X

Ce®o
X[——— 4 awe®3VG sin? 0 + (Bwy — aws)V/ 1 + €220 GII12 C.3
[RQ\/aCOSZ 0 1 v (ﬁ 2 2) ] ( )

Now if we combine the diffeomorphism invariance condition ([.2) together with the condi-
tion A, = 0 we obtain the relation

o)
0=r*— VGe [Bwi + Cws] . (C.4)

(a — B)V1+ 2o GII2R?
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